0 Daumen
560 Aufrufe

Welche ist die kleinste Anzahl von Teilstrecken eines Streckenzuges, der jede gelbe Fläche schneidet?

blob.png

Avatar von 123 k 🚀

Das Rätsel hat einen ziemlich langen Bart ;-)

es erscheint oft zusammen mit: pflanze vier Bäume, die paarweise alle den gleichen Abstand von einander haben. Wie geht das?

Was sagst du denn zu der einzigen bisher eingegangenen Lösung? Ist es diese, die den langen Bart hat?

Ist es diese, die den langen Bart hat?

Ja ... eine andere Lösung kenne ich auch nicht.

Und was ist hiermit:

blob.png


Und was ist hiermit:

hättest Du jetzt gar nicht verraten müssen ;-) siehe mein vorheriger Kommentar unter Georgs Antwort.

1 Antwort

0 Daumen

vier. Fülltext, Fülltext.

gm-395.jpg

Avatar von 123 k 🚀

Georg: es geht bereits mit dreien.

Ich habe mich kundig gemacht habe aber
keine bessere Lösung gefunden.

es geht bereits mit dreien.

Oh! Du meinst schon gerade Teilstrecken, die eine endliche Länge haben - oder?

Der Streckenzug darf durchaus 6, 7, 8, 9 ... Teilstrecken haben.

Wenn man die Frage wörtlich nimmt, geht es nicht um die Gesamtanzahl aller Strecken des verwendeten Streckenzugs, sonden nur um die "nützlichen" Teile davon.

Ah! ... ich hab's. Die Originalaufgabe handelt von Punkten. Rolands Variante fordert aber nur 'gelbe Flächen zu schneiden'.

Ja - dann geht es auch mit drei geraden Teilstrecken.

Hier etwas für alle Zweifler:

blob.png


Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community