Aufgabe:
Sei V der Vektorraum der Funktionen f : R ⇒ R. Sei U die Menge der Funktionen f mit der Eigenschaft, dass f(x) = f(−x) für alle x ∈ R gilt, W die Menge der Funktionen f mit der Eigenschaft, dass f(x) = −f(−x) für alle x ∈ R gilt. Zeigen Sie, dass U und W Unterräume von V sind, und dass sich jede Funktion f ∈ V eindeutig als Summe f = g + h mit g ∈ U und h ∈ W schreiben lässt.
Problem:
Mir fehlt leider jeglicher Ansatz für die Aufgabe.