Aufgabe:
Zeigen Sie, dass die Funktionen
\( s_{\infty}(x):=\sum \limits_{k=0}^{\infty} \exp \left(-k x^{2}\right) \quad \text { mit } x>0 \)
und
\( s_{\infty}(x):=\sum \limits_{k=1}^{\infty} x^{k}(1-x) \quad \text { mit } x \in[0,1] \)
im Sinne punktweiser konvergenter Funktionenfolgen wohldefiniert sind.