Hallo.
Die Aussage ist falsch. Man kann z.B. die
Funktionenfolge f(n) : [0,1] —> R,
f(n)(x) := sin(nx) / n, wählen. Die konvergiert gleichmässig gegen die Nullfunktion, denn es gilt: lim sup{|sin(nx)|/n : x ∈ [0,1]} = lim 1/n = 0.
Jedoch ist die Ableitung g(n)(x) = cos(nx). Die konvergiert nicht gleichmäßig gegen die Nullfunktion, denn: lim sup{|cos(nx)| : x ∈ [0,1]} = lim 1 = 1 ≠ 0.