f(x) = a·SIN(pi·x + c) + d
f'(x) = pi·a·COS(pi·x + c)
schneidet y-Achse in 4
f(0) = 4
a·SIN(c) + d = 4
und hat im Punkt P(2/4)
f(2) = 4
a·SIN(c) + d = 4
die Steigung m = 3pi.
f'(2) = 3·pi
pi·a·COS(c) = 3·pi
Sei c = pi
pi·a·COS(c) = 3·pi
pi·a·COS(pi) = 3·pi
a = -3
a·SIN(c) + d = 4
-3·SIN(pi) + d = 4
d = 4
Also z.B.
f(x) = - 3·SIN(pi·x + pi) + 4
Skizze