Du weisst also, dass die Folge der Partialsummen konvergiert, nehmen wir an gegen \( c \in \mathbb{R} \), also
\(\begin{aligned} c=\lim \limits_{n \rightarrow \infty} \sum \limits_{k=1}^{n} a_{k} \geqslant \lim \limits_{n \rightarrow \infty} \sum \limits_{k=1}^{n} a_{n}=\lim \limits_{n \rightarrow \infty} n a_{n}\end{aligned} \)
existiert. Kannst du den Beweis zuende führen?