Ich versuche mal etwas was nicht gefragt wird, nämlich die rechnerische Lösung.
P1 = (p11 | p12) Punkt auf Kreis 1 )
P2 = (p21 | p22) Punkt auf Kreis 2 ) gegeben
Q = (q1 | q2) Berührpunkt beider Kreise )
M1 = (m11 | m12) Mittelpunkt von Kreis 1 ]
M2 = (m21 | m22) Mittelpunkt von Kreis 2 ] gesucht
r1 , r2 Radius von Kreis 1 und 2 ]
\( | M_{1}P_{1} | + | M_{2}P_{2} | = | M_{1}M_{2} |\) Kreise berühren sich
\( | M_{1}Q | + | M_{2}Q | = | M_{1}M_{2} |\) Q liegt auf Verbindungsgerade der Mittelpunkte
\( | M_{1}P_{1} | = | M_{1}Q |\) Berührpunkt Q liegt auf Kreis 1
\( | M_{2}P_{2} | = | M_{2}Q |\) Berührpunkt Q liegt auf Kreis 2
\( | M_{1}Q | = | M_{2}Q |\) beide Kreise haben gleiche Radii
\( \quad \Big\Updownarrow \)
\( \sqrt{(p_{11}-m_{11})^2+(p_{12}-m_{12})^2} + \sqrt{(p_{21}-m_{21})^2+(p_{22}-m_{22})^2} = \sqrt{(m_{21}-m_{11})^2+(m_{22}-m_{12})^2} \)
\( \sqrt{(q_{1}-m_{11})^2+(q_{2}-m_{12})^2} + \sqrt{(q_{1}-m_{21})^2+(q_{2}-m_{22})^2} = \sqrt{(m_{21}-m_{11})^2+(m_{22}-m_{12})^2} \)
\( \sqrt{(p_{11}-m_{11})^2+(p_{12}-m_{12})^2} = \sqrt{(q_{1}-m_{11})^2+(q_{2}-m_{12})^2} \)
\( \sqrt{(p_{21}-m_{21})^2+(p_{22}-m_{22})^2} = \sqrt{(q_{1}-m_{21})^2+(q_{2}-m_{22})^2} \)
\( \sqrt{(q_{1}-m_{11})^2+(q_{2}-m_{12})^2} = \sqrt{(q_{1}-m_{21})^2+(q_{2}-m_{22})^2} \)
Beispiel:
P1 = (3 | 5), P2 = (8 | 2), Q = (7 | 7)
\( \sqrt{(3-m_{11})^2+(5-m_{12})^2} + \sqrt{(8-m_{21})^2+(2-m_{22})^2} = \sqrt{(m_{21}-m_{11})^2+(m_{22}-m_{12})^2} \)
\( \sqrt{(7-m_{11})^2+(7-m_{12})^2} + \sqrt{(7-m_{21})^2+(7-m_{22})^2} = \sqrt{(m_{21}-m_{11})^2+(m_{22}-m_{12})^2} \)
\( \sqrt{(3-m_{11})^2+(5-m_{12})^2} = \sqrt{(7-m_{11})^2+(7-m_{12})^2} \)
\( \sqrt{(8-m_{21})^2+(2-m_{22})^2} = \sqrt{(7-m_{21})^2+(7-m_{22})^2} \)
\( \sqrt{(7-m_{11})^2+(7-m_{12})^2} = \sqrt{(7-m_{21})^2+(7-m_{22})^2} \)
Lösung zum Beispiel:
M1 = \(\displaystyle (\frac{39}{11} \enspace \large|\normalsize \enspace \frac{98}{11}) \), M2 = \(\displaystyle (\frac{115}{11} \enspace \large|\normalsize \enspace \frac{56}{11}) \),
r1 = \( | M_{1}Q | \) = \(\displaystyle \frac{\sqrt{1885}}{11} \) , r2 = \( | M_{2}Q | \) = \(\displaystyle \frac{\sqrt{1885}}{11} \)
k1: (x - \( \frac{39}{11} \))2 + (y - \( \frac{98}{11} \))2 = \( \frac{1885}{121} \)
k2: (x - \( \frac{115}{11} \))2 + (y - \( \frac{56}{11} \))2 = \( \frac{1885}{121} \)