MLS Schätzer
$$ (1) \quad L(\theta;x) = \prod_{i=1}^n (\theta+1)x_i^\theta $$ also $$ (2) \quad \ln \left(L(\theta;x) \right) = \sum_{i=1}^n \ln(\theta+1) +\theta \sum_{i=1}^n \ln(x_i) = n \ln(\theta+1) + \theta \sum_{i=1}^n \ln(x_i) $$
(2) muss maximiert werden, also
$$ (3) \quad \frac{\partial}{\partial \theta} \ln \left(L(\theta;x) \right) = \frac{n}{\theta+1} +\sum_{i=1}^n \ln(x_i) = 0 $$ also
$$ (4) \quad \hat \theta = -\frac{n}{\sum_{i=1}^n \ln(x_i) } -1 $$
Hier ergibt sich \( \hat \theta = 3.662 \)
Momenten Schätzer
$$ \mathbb{E}(X) = \int_0^1 x (\theta+1) x^\theta dx = \frac{\theta+1}{\theta+2} $$
Mit $$ \mathbb{E}(X) \approx \overline{x} = \frac{\theta+1}{\theta+2} $$ folgt
$$ \hat \theta = - \frac{2 \overline{x} - 1}{\overline{x}-1} $$
Hier ergibt sich \( \hat \theta = 3.573 \)