Hallo Volbe,
(hier stand vorher was falsches)
Mein Antwort von gestern war ganz falsch. Das Verhältnis von \(|AB|\) zu \(|CD|\) ist$$\frac{|AB|}{|CD|} = 2 + \sqrt 2$$genau wie Du es bereits vorgegeben hast und das ist sowohl das Ergebnis aus Deinem Ansatz, als auch das Ergebnis aus den drei Gleichungen in der Anwort von abakus.
Und um Deine eigentliche Frage zu beantworten: Nein man kann keine Werte für \(a\) und \(c\) angeben. Du könntest z.B. \(c\) (oder die Höhe) beliebig wählen und danach das Trapez konstruieren.
Als Beleg hier ein Desmos-Script:
https://www.desmos.com/calculator/6q8rdna4mk
Bewege den Punkt \(C\) mit der Maus. Der Flächeninhalt der vier Dreiecke bleibt stets erhalten und ebenso das Verhältnis \(|AB|\div|CD|\). Aber die absoluten Werte des Strecken variieren.
Gruß Werner