Text erkannt:
(a) Seien \( n \in \mathbb{N} \) mit \( n \geq 3 \) und \( u: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}, u(x):=\|x\|_{2}^{2-n} \). Zeigen Sie:
\( (\triangle u)(x):=\sum \limits_{j=1}^{n} \partial_{j j} u(x)=0 \quad \text { für alle } x \in \mathbb{R}^{n} \backslash\{0\} \)
(b) Sei \( \Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \)
\( \Phi(r, \varphi, \vartheta)=\left(\begin{array}{c} r \cos (\varphi) \cos (\vartheta) \\ r \sin (\varphi) \cos (\vartheta) \\ r \sin (\vartheta) \end{array}\right) \)
die Kugelkoordinatenabbildung. Berechnen Sie \( \operatorname{det}\left(J_{\Phi}(r, \varphi, \vartheta)\right) \) für alle \( (r, \varphi, \vartheta) \in \mathbb{R}^{3} \).
Kann mir jemand mit dieser oder zumindest einer dieser Aufgaben weiterhelfen?
Bin für jede Hilfe sehr dankbar.
LIebe Grüße :)