Sei \( V \) ein \( K \)-Vektorraum mit \( \operatorname{dim}(V)=n \). Sei \( \varphi: V \rightarrow V \) eine lineare Abbildung sodass \( \varphi^{(n)}:=\underbrace{\varphi \circ \cdots \circ \varphi}_{n \text {-mal }}=0 \) und \( \varphi^{(n-1)} \neq 0 \). Sei \( \mathrm{x} \in V \operatorname{sodass} \varphi^{(n-1)}(\mathrm{x}) \neq 0 \).
Zeigen Sie, dass die Familie
\( \left\{\mathrm{x}, \varphi(\mathrm{x}), \varphi^{(2)}(\mathrm{x}), \ldots, \varphi^{(n-1)}(x)\right\} \)
eine Basis von \( V \) ist.
Aufgabe:
Problem/Ansatz:
bin hier bei dieser Aufgabe etwas verloren hoffe mir kann wer weiterhelfen