Aloha :)
Du hast ein Malzeichen, wo ein Minuszeichen hingehört.
Die Integrationsgrenzen fehlen und das Differential fehlt.$$\int\limits_{-\pi}^\pi\underbrace{x^2}_{=u}\cdot\underbrace{\cos x}_{=v'}\,dx=\left[\underbrace{x^2}_{=u}\cdot\underbrace{\sin x}_{=v}\right]_{-\pi}^\pi-\int\limits_{-\pi}^\pi\underbrace{2x}_{=u'}\cdot\underbrace{\sin x}_{=v}\,dx$$Der Term in eckigen Klammern ist \(=0\) und übrig bleibt nur das rechte Integral:$$\quad=\int\limits_{-\pi}^\pi\underbrace{-2x}_{=u}\cdot\underbrace{\sin x}_{=v'}\,dx=\left[\underbrace{(-2x)}_{=u}\cdot\underbrace{(-\cos x)}_{=v}\right]_{-\pi}^\pi-\int\limits_{-\pi}^\pi\underbrace{(-2)}_{=u'}\cdot\underbrace{(-\cos x)}_{=v}\,dx$$$$\quad=2\left[x\cos x\right]_{-\pi}^\pi-2\int\limits_{-\pi}^\pi\cos x\,dx=2(-\pi-\pi)-2\,\underbrace{\left[\sin x\right]_{-\pi}^\pi}_{=0}=-4\pi$$