da/dt=−ka^3.
Ich würde es so versuchen:
Trennung der Variablen
da = −ka^3 *dt
(1/−ka^3 ) *da = 1 dt
Integrieren 1/ (2k*a^2 = t +C
==> 2k*a^2 = 1/ (t+C)
==> a^2 = 1/ (2k*(t+C))
==> a = √(1/ (2k*(t+C)))
a0=8 mol/l und die Konstante k=0,09 (mol/l)^−2 min^−1
einsetzen
8 mol/l = √(1/ (2*0,09 (mol/l)^−2 min^−1*(0+C)))
8 mol/l = 2,29(mol/l) √ (1/(C min^−1))
3,49 = √ (1/(C min^−1))
12,20= 1/(C min^−1)
C min^−1 = 1/12,20 =0,082
C = 0,082min.
==> a (t) = 2,29(mol/l) √(1/ (t+0,082min)min^−1)
==> a(14)=0,61 mol/l.