f(x,y,z)= xyz+3xz3
Berechnen Sie die Richtungsableitung der Funktion f in Richtung des Vektors v=(1,2,-2)T
Problem/Ansatz:
=(yz+3z3 , xz , xy+9xz2)*(1,2,-2)T
Das ist der Ansatz, aber leider komme ich nicht mehr weiter.. Als Lösung soll -34/3 rauskommen.
Ich bedanke mich für jede Antwort! :)
Aloha :)
Zur Bestimmung der Richtungsableitung von$$f(x;y;z)=xyz+3xz^3$$in Richtung des Vektors$$\vec v=\begin{pmatrix}1\\2\\-2\end{pmatrix}$$musst du den Gradienten von \(f\) auf den Einheitsvektor von \(\vec v\) projezieren:
$$D_{\vec v}(f)=\operatorname{grad}f\cdot\frac{\vec v}{\|\vec v\|}=\begin{pmatrix}yz+3z^3\\xz\\xy+9xz^2\end{pmatrix}\cdot\frac{1}{\sqrt{9}}\begin{pmatrix}1\\2\\-2\end{pmatrix}$$$$\phantom{D_{\vec v}(f)}=\frac13\left(yz+3z^3+2xz-2xy-18xz^2\right)$$
Um jetzt auf die Lösung \((-\frac{34}{3})\) zu kommen, musst du diese Richtungsableitung an einem bestimmten Punkt auswerten. Den Punkt hast du aber nicht mit angegeben...
Hello :)
Also ich bin mir nicht sicher, ob du dir Definition der Richtungsableitung richtig verstanden hast. Per Definition müsstest du f((x, y, z) +t*(1,2-2))-f(x,y,z) und das ganze geteilt durch t bilden.
Schau dann mal, was du zusammenfassen kannst und kürzen kannst und bilde dann den Grenzwert.
Liebe Grüße
Der Ansatz ist schon richtig:
Skalarprodukt aus Gradient und Richtung
Wenn das Ergebnis allerdings eine Zshl sein soll, müsste ein Punkt gegeben sein in dem die Richtungsableitung bestimmt werden soll
Ahh ok, dann kannte ich wohl nicht die Vorgehensweise oder es ist zu lange her :)
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos