Aus der Rekursiongleichung ergibt sich folgende Reihe
$$ u_1(t) = 1 + \sin(t) $$
$$ u_2(t) = 1 + \sin(t) + \frac{1}{2} \sin^2(t) $$
$$ u_3(t) = 1 + \sin(t) + \frac{1}{2} \sin^2(t) + \frac{1}{6} \sin^3(t) $$
Allgemein also
$$ u_n(t) = \sum_{k=0}^n \frac{\sin^k(t)}{k!} $$
Weiter gilt $$ \left| e^{\sin(t)} - \sum_{k=0}^n \frac{\sin^k(t)}{k!} \right| \left| \sum_{k=0}^\infty \frac{\sin^k(t)}{k!} - \sum_{k=0}^n \frac{\sin^k(t)}{k!} \right| = \left| \sum_{k=n+1}^n \frac{\sin^k(t)}{k!} \right| \le \left| \sum_{k=n+1}^n \frac{1}{k!} \right| \le \\ \sum_{k=n+1}^{\infty} \frac{1}{2^{k-1}} = \sum_{k=n}^{\infty} \frac{1}{2^k} = \sum_{k=0}^{\infty} \frac{1}{2^{k}} - \sum_{k=0}^{n-1} \frac{1}{2^{k}} = 2 -\frac{1 - \left( \frac{1}{2} \right)^n}{1 - \frac{1}{2}} = \left( \frac{1}{2}\right)^{n-1} < \varepsilon $$ falls \( n \) groß genug ist.
$$ n > 1 - \frac{\ln(\epsilon)}{\ln(2)} $$