Aloha :)
$$a=(5,555\pm0,005)\,\mathrm m\quad;\quad b=(3,333\pm0,005)\,\mathrm m\quad;\quad\gamma=(121,222\pm0,001)\,\text{gon}$$
Mit dem Cosinus-Satz ermittelst du die fehlende Seite$$c=\sqrt{a^2+b^2-2ab\,\cos\gamma}\approx7,354152$$
Der Standard-Fehler folgt aus der Gauß'schen Fehlerfortpflanzung:$$(\delta c)^2=\left(\frac{\partial c}{\partial a}\,\delta a\right)^2+\left(\frac{\partial c}{\partial b}\,\delta b\right)^2+\left(\frac{\partial c}{\partial \gamma}\,\delta\gamma\right)^2$$$$\phantom{(\delta c)^2}=\left(\frac{2a-2b\cos\gamma}{2\sqrt{a^2+b^2-2ab\cos\gamma}}\,\delta a\right)^2+\left(\frac{2b-2a\cos\gamma}{2\sqrt{a^2+b^2-2ab\cos\gamma}}\,\delta b\right)^2+$$$$\phantom{(\delta c)^2}+\left(\frac{2ab\sin\gamma}{2\sqrt{a^2+b^2-2ab\cos\gamma}}\,\delta\gamma\right)^2$$$$\phantom{(\delta c)^2}=\left(\frac{a-b\cos\gamma}{c}\,\delta a\right)^2+\left(\frac{b-a\cos\gamma}{c}\,\delta b\right)^2+\left(\frac{ab\sin\gamma}{c}\,\delta\gamma\right)^2$$$$\phantom{(\delta c)^2}\approx3,26793\cdot10^{-5}$$Denke daran, den Messfehler des Winkels \((\delta\gamma=0,001\cdot\frac{\pi}{200})\) in \(\mathrm{rad}\) umzurechnen.
Damit ist \(\delta c\approx0,0057\approx0,006\), sodass:$$c=(7,354\pm0,006)\,\mathrm m$$