Aloha :)
Willkommen in der Mathelounge... \o/
Hierzu gibt es die Leibnizregel:$$\frac{d}{dy}\int\limits_{a(y)}^{b(y)}f(y,x)\,dx=\int\limits_{\red a(y)}^{\pink b(y)}\frac{\partial f}{\partial y}\,dx+f(y,\pink b)\cdot\frac{d\pink b}{dy}-f(y,\red a)\cdot\frac{d\red a}{dy}$$
Da hier die untere Grenze \(a(y)=0\) ist, erhalten wir:$$I'(y)=\int\limits_0^y\frac{\partial}{\partial y}\left[(x+y)f(x)\right]\,dx+\left[(x+y)f(x)\right]_{x=y}\cdot\frac{d}{dy}(y)=\int\limits_0^yf(x)\,dx+2yf(y)$$$$I''(y)=\frac{d}{dy}\int\limits_0^yf(x)\,dx+\frac{d}{dy}\left(2yf(y)\right)=f(y)+(2f(y)+2yf'(y))=3f(y)+2yf'(y)$$