Aufgabe:
Zylinderkoordinaten
Problem/Ansatz:
Ich lerne gerade verschiedene Übungen für eine Prüfung, aber es gibt eine bei der ich keinen Ansatz und Lösungsweg finde. Ich möchte gerne solche Aufgaben beherrschen können und wäre sehr dankbar wenn mir jemand auch nur bei einem der 3 Fragen helfen könnte.
Sie lautet:
An jedem Punkt in drei Dimensionen, der durch den Ortsvektor \( \vec{r}(\rho, \phi, z) \) spezifiziert wird, können in Zylinderkoordinaten die drei Einheitsvektoren
\( \overrightarrow{e_{\rho}}=\frac{\frac{\partial \vec{r}(\rho, \phi, z)}{\partial \rho}}{\left|\frac{\partial \vec{r}(\rho, \phi, z)}{\partial \rho}\right|}, \quad \overrightarrow{e_{\phi}}=\frac{\frac{\partial \vec{r}(\rho, \phi, z)}{\partial \phi}}{\left|\frac{\partial \vec{r}(\rho, \phi, z)}{\partial \phi}\right|}, \quad \overrightarrow{e_{z}}=\frac{\frac{\partial \vec{r}(\rho, \phi, z)}{\partial z}}{\left|\frac{\partial \vec{r}(\rho, \phi, z)}{\partial z}\right|} \)definiert werden. Diese drei Vektoren sind ortsabhängig und werden als Basisvektoren benutzt, um Vektoren in Zylinderkoordinaten auszudrücken.
a) Bestimmen Sie diese Basisvektoren als Linearkombination der ortsunabhängigen kartesischen Basisvektoren \( \overrightarrow{e_{x}}, \overrightarrow{e_{y}} \) und \( \overrightarrow{e_{z}} \).
b) Überprüfen Sie, ob diese Basisvektoren ein Orthogonalsystem bilden.
c) Drücken Sie das Vektorfeld \( \vec{B}(\vec{r})=\vec{B}(x, y, z)=\vec{B}(\rho, \phi, z)=-y \overrightarrow{e_{x}}+x \overrightarrow{e_{y}} \) in Zylinderkoordinaten aus
Mfg Rick