Alternativer Weg ohne Differenzieren:
\( f(x)=\frac{2}{x-2}+2 \) \(g(x)=-\frac{1}{2}*x+b \)
\( f(x)=g(x)\)
\( \frac{2}{x-2}+2=-\frac{1}{2}*x+b|*(x-2) \)
\( 2+2*(x-2)=-\frac{1}{2}*x^2-x+b*x-2b \)
\( 2*x-2=-\frac{1}{2}*x^2+x+b*x-2b|*2 \)
\( x^2+x*(2-2b)=4-4b \)
\( [x+(1-b)]^2=4-4b+(1-b)^2|\sqrt{~~} \)
\( x+(1-b)=+-\sqrt{4-4b+(1-b)^2} \)
\( +-\sqrt{4-4b+(1-b)^2}=0 \)
\(b₁=1\)
\(b₂=5\)
1.Tangente:
\(g1(x)=-\frac{1}{2}*x+1 \)
2.Tangente:
\(g2(x)=-\frac{1}{2}*x+5 \)