\(f(x) = \frac{1}{8} *(x^3 - 12 x + a)\)
\(f´(x) = \frac{1}{8} * (3x^2 - 12 )\)
\(\frac{1}{8} * (3x^2 - 12 )=0\)
\( x^2=4\) → \(x₁=2\) ∨ \(x₂=-2\)
\(f´´(x) = \frac{1}{8} * (6x )\)
\(f´´(2) = \frac{1}{8} * (6*2 )>0→Minimum\)
Somit berührt der Graph bei \(x₁=2\) die x-Achse im 1. Quadranten.
\(f(2) = \frac{1}{8} *(8 - 24 + a)\)
\(\frac{1}{8} *(8 - 24 + a)=0\)
\(a=16\)
\(f(x) = \frac{1}{8} *(x^3 - 12 x + 16)\)