0 Daumen
530 Aufrufe

Aufgabe:

Ein Pilot steuert sein Flugzeug über den Wolken ohne Funkverbindung mit genau südlichem Kurs. Sein Geschwindigkeitsmesser zeigt \( v=300 \mathrm{~km} / \mathrm{h} \) an. Nach genau \( 18 \mathrm{~min} \) Flugzeit reißt die Wolkendecke auf und er stellt fest, dass inn in dieser Zeit ein Westwind um 15,0 km nach Osten abgetrieben hat.

a) Berechnen Sie die Geschwindigkeit mit der sich das Flugzeug gegenüber der Erdoberfläche bewegt.
b) Berechnen Sie die in den \( 18 \mathrm{~min} \) zurückgelegte Weglänge auf der Erdoberfläche!
c) Ermitteln Sie den Kurs, den der Pilot hätte steuern müssen, um bei gleichem Wind über dem Boden genau nach Süden zu fliegen.


Problem/Ansatz:



Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

a) Berechnen Sie die Geschwindigkeit mit der sich das Flugzeug gegenüber der Erdoberfläche bewegt.

vw = (15 km) / (18/60 h) = 50 km/h

vg = √((300 km/h)^2 + (50 km/h)^2) = 304.1 km/h

b) Berechnen Sie die in den 18 min zurückgelegte Weglänge auf der Erdoberfläche!

s = (304.1 km/h) * (18/60 h) = 91.23 km

c) Ermitteln Sie den Kurs, den der Pilot hätte steuern müssen, um bei gleichem Wind über dem Boden genau nach Süden zu fliegen.

sin(α) = 15/300 --> α = 2.866°

Er sollte um 2.866° in Richtung Westen drehen.

Avatar von 487 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community