Aufgabe:
Problem/Ansatz:
Text erkannt:
Anffabe 4 Ser Q(m) das Prädikat \( \left(\exists k \in N: m=k^{2}\right) \). Ermittle, do die gegiene Aussage wahr oder falsoh ist:
(1) \( Q(16) \wedge \neg Q(17) \) - voahr
weil \( 16=4^{2} \), aber wir cönen aus 17 vorrel nicht findent
(2) \( \forall m \in \mathbb{N}: \forall n \in \mathbb{N}:[Q(m) \wedge Q(n) \Rightarrow Q(m+n)] \)
\( \begin{array}{l} \neg(Q(m) \wedge Q(n)) \vee Q(m+n) \\ \neg Q(m) \vee \neg Q(n) \vee Q(m+n) \quad \text { - falsch } \end{array} \)
Text erkannt:
weel 2.B. \( m=16, \quad n=25 \quad m+n=41 \)
\( k^{2}=41 \)
\( R=\sqrt{41} \notin \mathbb{N} \)
(3) \( \forall m \in \mathbb{N}=\forall n \in \mathbb{N}:[Q(m) \wedge Q(n) \Rightarrow Q(m n)] \) - wahr
weil 2.B. \( m=16, n=25 \quad m m=4 \cdot 4 \cdot 5 \cdot 5 \)
\( k=v_{\text {mn }}=4.5=20 \in \mathbb{N} \)
Ich glaube, dass ich im 2.Beispiel nicht richtig gezeigt habe, dass die Aussage falsch ist. Also wahrscheinlich ist das, dass ich die Aussage „aufgemacht“ habe, nicht notwendig. Weil das uns nichts zeigt.
Aber wie dann kann man, eine solche falsche Aussage beweisen. Nur beim Zeigen von Beispielen?
Vielen Dank im Voraus!!! Und überprüfen bitte andere