Dein Beispiel zeigt das 2-fache kartesische Produkt.
Das x-fache kartesische Produkt lautet:$$A_{ 1 }\times { A }_{ 2 }\times ...\times { A }_{ x }$$Das kann man auch schreiben als:$$=((...(A_{ 1 }\times { A }_{ 2 })\times A_{ 3 }\times ...\times { A }_{ x })$$$$=\left\{ { (a_{ 1 },{ a }_{ 2 }) }|{ { a }_{ 1 }\in { A }_{ 1 }\wedge }{ a }_{ 2 }\in { A }_{ 2 } \right\} \times A_{ 3 }\times ...\times { A }_{ x }$$$$=\left\{ { ((a_{ 1 },{ a }_{ 2 }),{ a }_{ 3 }) }|{ { a }_{ 1 }\in { A }_{ 1 }\wedge }{ a }_{ 2 }\in { A }_{ 2 }\wedge { a }_{ 3 }\in { A }_{ 3 } \right\} \times { A }_{ 4 }\times ...\times { A }_{ x }$$$$...$$$$=\left\{ { (...(a_{ 1 },{ a }_{ 2 }),...,a_{ x-1 }),{ a }_{ x }) }|{ { a }_{ 1 }\in { A }_{ 1 }\wedge }{ a }_{ 2 }\in { A }_{ 2 }\wedge { ...\wedge a }_{ x }\in { A }_{ x } \right\}$$und das kann man auch ohne "innere" Klammern schreiben, also so:$$=\left\{ { (a_{ 1 },{ a }_{ 2 },...,{ a }_{ x }) }|{ { a }_{ 1 }\in { A }_{ 1 }\wedge }{ a }_{ 2 }\in { A }_{ 2 }\wedge { ...\wedge a }_{ x }\in { A }_{ x } \right\}$$