1. Grad n
2. Nachrechnen Lk(xk)= 1, also L(xk)=f(xk)*1 = f(xk)
3. \( f(x_{0})=0 , f(x_{1}) =2 , f(x_{2})=6 \)
\(L_{0}(x)=\prod \limits_{\substack{j=0 \\ j \neq 0}}^{n} \frac{x-x_{j}}{x_{k}-x_{j}} =\frac{x-1}{0-1} \cdot \frac{x-2}{0-2} =\frac{x^2-3x+2}{2} \)
\(L_{1}(x)=\prod \limits_{\substack{j=0 \\ j \neq 1}}^{n} \frac{x-x_{j}}{x_{k}-x_{j}} =\frac{x-0}{1-0} \cdot \frac{x-2}{1-2} =\frac{x^2-2x}{-1} \)
\(L_{2}(x)=\prod \limits_{\substack{j=0 \\ j \neq 2}}^{n} \frac{x-x_{j}}{x_{k}-x_{j}} =\frac{x-0}{2-0} \cdot \frac{x-1}{2-1} =\frac{x^2-x}{2} \)
Also L(x)=f(x)