0 Daumen
636 Aufrufe

Sie legen heute 23.000 Euro auf ein Konto mit einer Verzinsung von 1,68 Prozent p.a. (jährliche Verzinsung). 4 Jahre später zahlen Sie weitere 3.000 Euro auf das Konto ein. Weitere 5 Jahre später passt die Bank den Zinssatz auf 2,64 Prozent p.a. (monatliche Verzinsung) an. Nach weiteren 5 Jahren wollen Sie all Ihr Geld abheben. Wie viel Geld ist das? Runden Sie das Endergebnis auf zwei Kommastellen. (2 Punkte)


Wie berechne ich die Lösung hierfür?

Avatar von

Falls du wirklich einen Monatszins meintest, ist die Antwort von ggT richtig und meine falsch. Aber ich denke mal nicht, wegen dem per anno im Nachgang.

2 Antworten

0 Daumen

[(23000*1,0168^4 + 3000)*1,0168^5]*(1+0,0264/12)^60 = 34.205,95

Avatar von 39 k
0 Daumen

Ich würde es so machen:

23 000 • \(1.0168^{4} \) + 3000

(23 000 • \(1.0168^{4} \) + 3000) • \( 1.0168^{5} \)

Diesen Term dann einfach noch ein letztes mal mit dem neuen Zins hoch 5 multiplizieren.

Angenommen der letzte Zins ist per annum und nicht monatlich.

Du kannst den Term auch in einer Zeile natürlich ausdrücken.

Avatar von

In den letzten fünf Jahren wird das Guthaben monatlich verzinst.

Denke das war nur ein Scheibfehler, per annum steht dort ja noch, und weniger Sinn würde es auch machen.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community