Aufgabe:
Sei \( P \) ein Wahrscheinlichkeitsmaß auf einem Ereignisraum \( (\Omega, \mathcal{A}) \) und \( A_{n} \in \mathcal{A} \), für alle \( n \in \mathbb{N} \).
a) Zeigen Sie, dass wenn \( A_{n} \uparrow A \), d.h. \( A_{1} \subset A_{2} \subset \ldots \) und \( A=\bigcup_{n=1}^{\infty} A_{n} \), so gilt \( P\left(A_{n}\right) \rightarrow P(A) \) für \( n \rightarrow \infty \).
b) Zeigen Sie, dass wenn \( A_{n} \downarrow A \), d.h. \( A_{1} \supset A_{2} \supset \ldots \) und \( A=\bigcap_{n=1}^{\infty} A_{n} \), so gilt \( P\left(A_{n}\right) \rightarrow P(A) \) für \( n \rightarrow \infty \).
Problem/Ansatz:
Kann jemand einen Ansatz geben für beide Teilaufgaben und was ist dieser Pfeil der nach oben zeigt?