\(\int \limits_{0}^{c} f(x) d x=\int \limits_{c}^{2} f(x) d x \)
<=> \(\int \limits_{0}^{c} x^2 d x=\int \limits_{c}^{2} x^2 d x \)
<=> \( [\frac{1}{3}x^3 ]_{0}^{c} = [\frac{1}{3}x^3 ]_{c}^{2} \)
<=> \( \frac{1}{3}c^3 - \frac{1}{3}0^3 = \frac{1}{3}2^3 - \frac{1}{3}c^3 \)
<=>\( \frac{2}{3}c^3 = \frac{1}{3}2^3 \)
<=> \( \frac{2}{3}c^3 = \frac{8}{3} \)
<=> c^3 = 4
<=> c=4^(1/3) .