0 Daumen
1,2k Aufrufe

Zerlegen Sie das komplexe Polynom f(z) = 3z3 − 9z2 + 3z + 15 vollständig in
seine (komplexen) Linearfaktoren. Gehen Sie dafür wie folgt vor:
a) (i) Die erste Nullstelle ist z1 = 2 + i. Spalten Sie diese mithilfe von Polynomdivision ab, um zu zeigen, dass gilt f(z) = 3z3 − 9z2 + 3z + 15 = 3(z3 − 3z2 + z + 5) =3(z − (2 + i))(z2 − (1 − i)z − 2 + i).

ii) Bestimmen Sie die zweite Nullstelle z2, indem Sie sich überlegen, dass mit z immer auch z eine Nullstelle des Polynoms ist, da alle Koeffizienten reell sind.

iii) Spalten Sie die zweite Nullstelle z2 (aus ii) mihilfe von Polynomdivision ab und bestimmen Sie die dritte Nullstelle z3.

iv)

Geben Sie die Linearfaktorzerlegung von f an, d.h. schreiben Sie die Funktion in der Form f(z) = c(z − z1)(z − z2)(z − z3)  mit c ∈ C.


b) Bestimmen Sie alle komplexen Nullstellen des Polynoms p(z) = z3 + (2 + 2i), d.h. alle komplexen Lösungen der Gleichung z3 = −(2 + 2i).


Hat hierzu jemand mögliche Lösungsvorschläge?

Avatar von

1 Antwort

0 Daumen

i)  ( 3z^3 − 9z^2 + 3z + 15):(z -2-i ) = 3z^2 + (-3+3i)z +(-6+3i)
   3z^3 -6z^2-3iz^2 
---------------------------
          (-3+3i)z^2    + 3z + 15
          (-3+3i)z^2 + (9-3i)z
        -----------------------------
                            (-6+3i)z + 15 
                             (-6+3i)z + 15
                            ------------------
                                               0

==>   f(z) = (  3z^2 + (-3+3i)z +(-6+3i) ) * (z -2-i ) 3 ausklammern.
              = 3* (  z^2 + (-1+i)z +(-2+i) ) * (z -2-i )
              =  3(z^2 − (1 − i)z − 2 + i)*(z − (2 + i))  Passt also !

Avatar von 289 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community