\(f(x,y)=x+y\) soll minimal werden.
\(x^2-2x+1+y^2≤1\)
\(P(u)\) liegt auf \(y= \sqrt{-x^2+2x} \) →\(v= \sqrt{-u^2+2u} \)
\(f(u)=u+ \sqrt{-u^2+2u}\)
\(f´(u)=1- \frac{2-2u}{2*\sqrt{-u^2+2u}}\\ =1- \frac{1-u}{\sqrt{2u-u^2}} \)
\(1- \frac{1-u}{\sqrt{2u-u^2}} =0 \)
\(\sqrt{2u-u^2} =1-u |^{2} \)
\(2u-u^2 =1-2u+u^2 \)
\(4u-2u^2 =1 \)
\(u^2-2u =-\frac{1}{2} \)
\((u-1)^2 =-\frac{1}{2}+1 =\frac{1}{2} |\sqrt{~~} \)
1.)
\(u-1 =\frac{1}{2} *\sqrt{2} \)
\(u_1 =1+\frac{1}{2} *\sqrt{2} \) →\(v_1= \sqrt{-(1+\frac{1}{2} *\sqrt{2})^2+2*(1+\frac{1}{2} *\sqrt{2}})=\frac{1}{2}*\sqrt{2} \)→maximaler Wert
2.)
\(u-1 =-\frac{1}{2} *\sqrt{2} \)
\(u_2 =1-\frac{1}{2} *\sqrt{2} \) →\(v_2= \sqrt{-(1-\frac{1}{2} *\sqrt{2})^2+2*(1-\frac{1}{2} *\sqrt{2}}) =\frac{1}{2}*\sqrt{2}\) minimaler Wert