Aloha :)
Willkommen in der Mathelounge... \o/
Wir beweisen die folgende Behauptung$$\binom{n+k}{k+1}=\sum\limits_{\ell=1}^n\binom{n+k-\ell}{k}\quad;\quad n\in\mathbb N\;;\;k\in\mathbb N_0$$durch vollständige Indukion über \(n\).
Verankerung bei \(n=1\):$$\binom{n+k}{k+1}=\binom{1+k}{k+1}=\binom{k+1}{k+1}=1$$$$\sum\limits_{\ell=1}^n\binom{n+k-\ell}{k}=\sum\limits_{\ell=1}^1\binom{1+k-\ell}{k}=\binom{1+k-1}{k}=1$$Beide Seiten der Gleichung liefern den Wert \(1.\quad\checkmark\)
Induktionsschritt von \(n\) auf \((n+1)\):$$\sum\limits_{\ell=1}^{\pink{n+1}}\binom{\pink{n+1}+k-\ell}{k}=\sum\limits_{\ell=1\green{-1}}^{\pink{n+1}-\green{1}}\binom{\pink{n+1}+k-(\ell\green{+1})}{k}=\sum\limits_{\ell=0}^n\binom{n+k-\ell}{k}$$$$\qquad=\binom{n+k-0}{k}+\sum\limits_{\ell=1}^n\binom{n+k-\ell}{k}\stackrel{\text{(Ind.Vor.)}}{=}\binom{n+k}{k}+\binom{n+k}{k+1}$$Im letzten Schitt verwende die sicherlich bekannte Identität \(\binom{N+1}{K}=\binom{N}{K}+\binom{N}{K-1}\) mit \(K=k+1\) und \(N=n+k\) verwendet:$$\qquad=\binom{\pink{n+1}+k}{k+1}\quad\checkmark$$