Es sei \( f: \mathbb{R}^{2} \rightarrow \mathbb{R} \) mit \( f(x, y):=2-x^{2}-y^{2} \) und \( \gamma:(-1,1) \rightarrow \mathbb{R}^{2} \) ein differenzierbarer Weg mit \( \gamma(0)=(1,1) \) und \( \gamma^{\prime}(0)=(-1,-1) \). Berechnen Sie
\( \frac{d}{d t}(f \circ \gamma)(0) \)
und verwenden Sie dieses Ergebnis um die Richtungsableitung \( \partial_{v} f(a) \) von \( f \) an der Stelle \( a=\gamma(0) \) in Richtung des Tangentenvektors an die Kurve zu berechnen.
Ich habe als Ergebnis 4 raus, wie kann ich diese jetzt benutzen um die Richtungsableitung zu bestimmen?
Ist die Richtungsableitung etwa auch 4?