Aufgabe:
Für welche \( a \in \mathbb{R}^{+} \)ist die Funktion \( f: \mathbb{R}^{2} \rightarrow \mathbb{R} \),
\( f(x, y)=\left\{\begin{array}{cc} \frac{x|y|^{a}}{x^{2}+y^{4}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0) \end{array}\right. \)
stetig?
Problem/Ansatz:
Für (x,y)≠ (0,0) ist es als Zusammensetzung stetiger Funktionen wieder stetig, jedoch weiß ich nicht, wie man bei (x,y)=0 vorgeht bzw. das genau beweist. Könnte mir jemand helfen?