Aufgabe:
Problem/Ansatz:
Text erkannt:
(d) Gegeben sei \( f(x)=2 x^{3}-51 x^{2}+396 x+2 \) auf \( [6 ; \infty) \). Bestimmen Sie die Intervalle \( I \) und \( J \), so dass \( I \) und \( J \) zusammen \( [6 ; \infty) \) ergeben und \( f \) auf \( I \) monoton wachsend, auf \( J \) monoton fallend ist.
Die linke Intervallgrenze von \( I \) ist:
Die rechte Intervallgrenze von \( I \) ist: \( \quad ? \)
Die linke Intervallgrenze von \( J \) ist:
Die rechte Intervallgrenze von \( J \) ist:
(e) Gegeben sei \( f(x)=e^{x}\left(x^{2}-8 x+9\right) \). Bestimmen Sie das Intervall \( I \), auf dem der Graph von \( f \) rechtsgekrümmt ist.
Die linke Intervallgrenze ist: \( -8 \)
Die rechte Intervallgrenze ist: 8
Ich wäre sehr dankbar, wenn mir jemand bei den beiden Aufgaben helfen könnte.