Es sei n∈ℕ mit \(\sum \limits_{k=1}^{n} k^{3}=\frac{n^{2} \cdot(n+1)^{2}}{4} \) #
==>
\(\sum \limits_{k=1}^{n+1} k^{3}= ( \sum \limits_{k=1}^{n} k^{3}) + (n+1)^3 \)
Wegen # also
\( = \frac{n^{2} \cdot(n+1)^{2}}{4} + (n+1)^3=\frac{n^{2} \cdot(n+1)^{2}+4(n+1)^3 }{4}\)
\( = \frac{(n+1)^{2}(n^2+4(n+1)) }{4} = \frac{(n+1)^{2}(n^2+4n+4)}{4} = \frac{(n+1)^{2} \cdot(n+2)^{2}}{4} \) q.e.d.