Ich frage mich warum, wenn A und B nxn-Matrizen sind und A*B = Identität gilt warum agieren dann A und B wie Umkehrfunktionen? Also (x und y Vektor mit n Komponenten) A*x=y <=> B*y=x.
Meine Ideen:
1. Man kann jede Matrix als lineare Abbildung interpretieren. Wenn A*B=Identität ist kann man zeigen, dass B*A=Identität ist. Also muss man nur noch zeigen, dass f o g = Identität und g o f = Identität impliziert, dass g die Umkehrfunktion von f ist, aber wie ist mir auch unklar.
2. Wenn man das Inverse bestimmt von A und det(A)≠0 dann kann man (A | Identität) mithilfe elementarer Zeilenumformungen zu (Identität | B) bringen. Also wendet B quasi diese elementare Zeilenumformungen “rückwärts” an und somit gilt A*B = Identität und B*y=x<=> A*x=y + Eindeutigkeit von B in A*B=Identität.