Aufgabe:
Wie kommt man von der Dichtefunktion:
\( f_{k}(x)=\left\{\begin{array}{rr}k \cdot e^{-k \cdot x}, & \text { für } x \geq 0 \\ 0, & \text { für } x<0\end{array}\right. \)
auf die Verteilungsfunktion?:
\( F(x)=\left\{\begin{array}{cc}1-\mathrm{e}^{-2 x}, & \text { für } x>0 \\ 0, & \text { für } x \leq 0\end{array}\right. \)
Problem/Ansatz:
Könnt ihr mir den Rechenweg erklären? Wenn ich die Dichtefunktion integriere komme ich auf \( -\mathrm{e}^{-2 x} \) und das ist ja nicht der “obere Teil der Verteilungsfunktion“