Aufgabe:
Für jedes a > 0 ist eine Funktion f , gegeben durch f a( x ) = ax² (1 - In (x²/a)) und die zweite Ableitung durch fa ''( x ) = - 2a ( In(x²/a)+2)
- Geben Sie den größtmöglichen Definitionsbereich der Funktion an und bestimmen Sie die Nullstellen dieser Funktion . Weisen Sie nach , dass der Graph der Funktion f , achsensymmetrisch zur y - Achse ist . Ermitteln Sie die Koordinaten der lokalen Extrempunkte des Graphen der Funktion f , und untersuchen Sie die Art der Extrema .
Problem/Ansatz:
Hallo, ich bin gerade beim üben für meine Klausur nächste Woche auf diese Aufgabe gestoßen mit einige weiternen Aufgaben, die ich nicht wirklich weiß wie man das löst. Für die Definitionsbereich habe ich a>0 da man die null ja nicht in der ln einsetzen kann. Kann mir jm bitte die Schritte vielleicht zeigen, wie man nullstellen bei speziell ln funktionen + funktionsscharen lösen kann und wie man dann die Extrempunkte beweist und zeigt wo sie liegen.