\(x-2-\frac{7}{x+2}=\frac{x+2}{x+3}-\frac{1}{(x+3)(x+2)} \)
\(x-2-\frac{7}{x+2}=\frac{(x+2)^2}{(x+3)(x+2)}-\frac{1}{(x+3)(x+2)} \)
\(x-2-\frac{7}{x+2}=\frac{x^2+4x+3}{(x+3)(x+2)} \)
\(x-2-\frac{7}{x+2}=\frac{x^2+x+3x+3}{(x+3)(x+2)} \)
\(x-2-\frac{7}{x+2}=\frac{x(x+1)+3(x+1)}{(x+3)(x+2)} \)
\(x-2-\frac{7}{x+2}=\frac{(x+3)(x+1)}{(x+3)(x+2)} \)
\(x-2-\frac{7}{x+2}=\frac{x+1}{x+2} \text{~~~~für~ }x\neq-3\)
\(x^2-4-7=x+1\)
\(x^2-x-12=0\)
\(x_{12}=0,5\pm\sqrt{12,25}\)
\(x_1=0,5-3,5=-3 \Rightarrow \text{keine Lösung}\)
\(x_2=0,5+3,5=4\)
\(\mathbb L=\{4\}\)