\(\small |A{-\lambda}E |\, := \, \left|\begin{array}{rrrr}-\lambda&1&1&0\\1&-\lambda&0&1\\0&0&-\lambda + 1&0\\0&0&1&-\lambda + 1\\\end{array}\right|\)
={{-λ, 1, 1, 0}+ λ {1, -λ, 0, 1}, {1, -λ, 0, 1}, {0, 0, -λ + 1, 0}-(1-λ) {0, 0, 1, -λ + 1}, {0, 0, 1, -λ + 1}}
\(\small = \left|\begin{array}{rrrr}0&-\lambda^{2} + 1&1&\lambda\\1&-\lambda&0&1\\0&0&0&-\left(-\lambda + 1 \right)^{2}\\0&0&1&-\lambda + 1\\\end{array}\right|\)
===>
( -λ² + 1) 1(-(-λ + 1)²) =0