Text erkannt:
Hausaufgabe H.10.3
Es seien \( A, B \subset \mathbb{R} \) mit \( A \cup B=\mathbb{R} \) und \( f: \mathbb{R} \rightarrow \mathbb{R} \) eine Funktion, deren Einschränkungen \( \left.f\right|_{A} \) und \( \left.f\right|_{B} \) stetig sind. Beweise oder widerlege, dass dann \( f \) stetig sein muss.
Aufgabe:
Problem/Ansatz:
Ich weiß, dass ich ein Gegenbeispiel zeigen muss aber leider fällt mir nichts ein.
Mein bisheriger Ansatz lautet so: man könnte für A die Menge aller positiven reellen Zahlen (inkl. 0) betrachten und für B die Menge aller negativen reellen Zahlen. Aber leider komme ich nicht weiter. Ich weiß nicht mal ob meinen Ansatz Sinn macht