Aloha :)
Immer wenn du die Extrema einer Funktion mit mehreren Veränderlichen unter konstanten(!) Nebenbedingungen suchst, kannst du das Lagrange-Verfahren anwenden. Lagrange sagt im Kern aus, dass der Gradient der zu optimierenden Funktion eine Linearkombination der Gradienten aller Nebenbedingungen sein muss.
Hier haben wir eine Funktion \(f(x;y)\) und eine konstante Nebenbedingung \(g(x;y)\):$$f(x;y)=-3x^2-2,1y^2+20\quad;\quad g(x;y)=x+y=40=\text{const}$$Nach Lagrange muss für Extremwerte gelten:$$\operatorname{grad}f(x;y)=\lambda\cdot\operatorname{grad}g(x;y)\implies\binom{-6x}{-4,2y}=\lambda\binom{1}{1}\implies6x=4,2y\implies \pink{x=0,7y}$$
Die pinke Lagrange-Bedingung setzt du in die konstante Nebenbediungung ein:$$40=x+y=0,7y+y=1,7y\quad\implies\quad y=\frac{40}{1,7}\approx23,53\quad;\quad x=\frac{40}{1,7}\cdot0,7\approx16,47$$
In deiner Rechnung ist die das Minuszeichen vor \(4,2y\) irgendwie verloren gegangen.