Wie müssten die Abmessungen einer oben offenen kegelförmigen Eiswaffel sein, damit bei vorgegebenem Kegelvolumen die Innenwandoberfläche der Eiswaffel minimal wird?
Bitte nachrechnen, es könnte ein Fehler drin sein:
HB: \(M(r,s)=π*r*s\) soll minimal werden.
NB: \(V= \frac{1}{3}*π*r^2*h \) \(3*V= π*r^2*h \) \(h= \frac{3*V}{π*r^2} \) \(h^2= \frac{9*V^2}{π^2*r^4} \)
\(s=\sqrt{h^2+r^2} \)
\(M(r)=π*r*\sqrt{h^2+r^2}\) \(M(r)=π*r*\sqrt{\frac{9*V^2}{π^2*r^4}+r^2}\)
\(M(r)=\sqrt{\frac{9*V^2}{r^2}+π^2*r^4}=\sqrt{\frac{9*V^2+π^2*r^6}{r^2}}\)
\( \frac{d M(r)}{d r}=\frac{1}{2 \sqrt{\frac{9 V^{2}+\pi^{2} \cdot r^{6}}{r^{2}}}} \cdot \frac{6 \cdot \pi^{2} \cdot r^{5} \cdot r^{2}-\left(9 V^{2}+\pi^{2} \cdot r^{6}\right) \cdot 2 r}{r^{4}} \)
\( \frac{d M(r)}{d r}=\frac{1}{2 \sqrt{\frac{9 V^{2}+\pi^{2} \cdot r^{6}}{r^{2}}}} \cdot \frac{6 \cdot \pi^{2} \cdot r^{5} \cdot r-\left(9 V^{2}+\pi^{2} \cdot r^{6}\right) \cdot 2}{r^{3}} \)
\( \frac{d M(r)}{d r}=\frac{1}{\sqrt{\frac{9 V^{2}+\pi^{2} \cdot r^{6}}{r^{2}}}} \cdot \frac{3 \cdot \pi^{2} \cdot r^{6}-9 V^{2}-\pi^{2} \cdot r^{6}}{r^{3}} \)
\( \frac{d M(r)}{d r}=\frac{1}{\sqrt{\frac{9 V^{2}+\pi^{2} \cdot r^{6}}{r^{2}}}} \cdot \frac{2 \cdot \pi^{2} \cdot r^{6}-9 V^{2}}{r^{3}} \)
\( \frac{1}{\sqrt{\frac{9 V^{2}+\pi^{2} \cdot r^{6}}{r^{2}}}} \cdot \frac{2 \cdot \pi^{2} \cdot r^{6}-9 V^{2}}{r^{3}}=0 \)
\( r^{6}=\frac{9 V^{2}}{2 \cdot \pi^{2}} \)
\( { }_{}^{6} \sqrt{\frac{9 V^{2}}{2 \cdot \pi^{2}}} \)