Aufgabe:
Das auf einer Breite von 40 Metern konstante Profil eines Aufsprunghanges einer Skisprungschanze soll näherungsweise in einem Koordinatensystem durch den Graphen der Funktion f mit
f(X) = 3:100000•x^3-9:1000•x^2+1:5•x+ 80
(x E IR; 0 _< x _< 250) beschrieben werden.
(x: horizontale Entfernung vom Absprungpunkt in m; y - Höhe in m). Die Kante des Schanzentisches liegt im
Punkt A (0|86).
b) „Hillsize" ist ein Maß für die Größe einer Sprungschanze. Sie ist festgelegt als Länge der Strecke zwisch Schanzentischkante und dem Punkt hinter dem K-Punkt des Aufsprunghanges, in dem nur noch ein Gefällt von 32° vorhanden ist.
Berechnen Sie die „Hillsize" dieser Schanze. Runden Sie auf volle Meter.
Problem/Ansatz:
Aufgaben Teil AA konnte ich ohne Probleme mit den Ableitungen lösen. Aber hier habe ich keine Ahnung, wie ich das rechnen soll. Ich würde mich über einen ausführlichen Lösungsweg freuen. Am besten noch heute oder morgen ;)