\( N^{\prime}(t)=(20-20 t) \cdot e^{-t} \)
\(u´=e^{-t}\) → \(u=-e^{-t}\)
\(v= 20-20 t\) → \(v´=-20\)
\( \int\limits_{}^{}(20-20 t) \cdot e^{-t}\cdot dt=-e^{-t}\cdot(20-20t) - \int\limits_{}^{}-e^{-t}\cdot(-20)\cdot dt\)
\( \int\limits_{}^{}(20-20 t) \cdot e^{-t}\cdot dt=-e^{-t}\cdot(20-20t)- \int\limits_{}^{}e^{-t}\cdot 20\cdot dt\)
\( \int\limits_{}^{}(20-20 t) \cdot e^{-t}\cdot dt=-e^{-t}\cdot(20-20t)+20\cdot e^{-t}+C \)