Wenn der Umfang maximal werden soll
U(u) = 2g + 2h = 2(2u) + 2(8 - 2u^4) = 4u + 16 - 4u^4 = - 4u^4 + 4u + 16
U'(u) = - 16u^3 + 4 = 0 → u = 0.25^(1/3) = 0.6300
Wenn die Fläche maximal werden soll
A(u) = g = h = (2u) * f(u) = (2u) * (8 - 2u^4) = 16u - 4u^5
A'(u) = 16 - 20u^4 = 0 → u = 0.8^(1/4) = 0.9457