Aufgabe:
Berechnung des Erwartungswertes für die Geometrische Verteilung.
Folgende Rechnung ist bekannt:
$$ {\displaystyle \operatorname {E} (X)=p\sum _{k=1}^{\infty }k\,(1-p)^{k-1}=p\sum _{k=0}^{\infty }\,{\frac {\mathrm {d} }{\mathrm {d} p}}\left(-(1-p)^{k}\right)=-p{\frac {\mathrm {d} }{\mathrm {d} p}}\left(\sum _{k=0}^{\infty }\,(1-p)^{k}\right)=-p{\frac {\mathrm {d} }{\mathrm {d} p}}\left({\frac {1}{p}}\right)={\frac {1}{p}}} $$
Frage/Problem: Ich bin verwirrt über den Teil mit d/dp. Warum kann hier eine Integration erfolgen, wenn es sich doch hierbei um eine diskrete Verteilung handelt? Und warum wird das hier gemacht? Welchen Vorteil hat dies?