Aufgabe:
Verrichtete Arbeit eines Teilchens auf einer Ellipse berechnen
Problem/Ansatz:
Berechnen Sie die zu verrichtende Arbeit, um ein Partikel im Kraftfeld \( \vec{F} \)(x,y) entlang dem oberen Teil der Ellipse x2 + y2/b2 = 1 von (-1,0) bis (1,0) zu verschieben.
\( \vec{F} \)(x,y)= 3y2+2\\16x
Verwenden Sie die dazu Parameterform der Ellipse mit x=cos(t).
Ich weiß dass dies ein Kurvenintegral ist und ich kenne ebenfalls die Parametrisierung einer Ellipse. Ich weiß nur trotzdem nicht genau wie man diese Aufgabe löst.