Aufgabe:
Sei $$A:\mathbb{R} ^{\mathbb{R} } \rightarrow \mathbb{R} ^{\mathbb{3} },f\rightarrow(f(0),f(1),f(2))$$ mit $$A^{-1}:(\left\{a, b, c\right\}) =\left\{f\in \mathbb{R} ^{\mathbb{R}} | f(0)=a,f(1)=b, f(2)=c\right\}$$ und $$L_{0,1,2}:\mathbb{R}^{\mathbb{3}} \rightarrow \mathbb{R}^{\mathbb{R}} , (a,b,c)\rightarrow \frac{1}{2}a(x-1)(x-2)-bx(x-2)+\frac{1}{2}cx(x-1)$$ zeige, dass L eine Rechtsinverse zu A ist.
Mein Ansatz ist $$A\circ L_{0,1,2}(g)=g$$ mit $$g \in \mathbb{R}^{\mathbb{R}}$$ Da erhalte ich allerdings nach einsetzen und umformen (g(0),(g1),g(2)) was ja nicht = g ist. Habe ich irgendwas falsch gemacht?
Vielen Dank für eure Hilfe.