Aufgabe:
Seien \( n \geq 1, K \) ein Körper, \( a, b \in K \) mit \( a \neq b \) und \( C_{n}=\left(c_{i j}\right) \in K^{n \times n} \) mit
\( C_{n}=\left(\begin{array}{cccc} a+b & a b & & 0 \\ 1 & a+b & \ddots & \\ & \ddots & \ddots & a b \\ 0 & & 1 & a+b \end{array}\right), \text { also } c_{i j}=\left\{\begin{array}{ll} a+b & \text { für } i=j, \\ a b & \text { für } i=j-1, \\ 1 & \text { für } i=j+1, \\ 0 & \text { sonst. } \end{array}\right. \)
Zeigen Sie \( \operatorname{det}\left(C_{n}\right)=\frac{a^{n+1}-b^{n+1}}{a-b} \).
Problem/Ansatz:
Mein Plan war es das über Induktion und der Definition der Determinante zu machen. Irgendwie klappt das nicht so 100% wie ich will.
Wäre über Hilfe/Lösung sehr dankbar.