Problem/Ansatz:
Ich habe Allgemeine Fragen zur Stetigkeit im R^2. Ich habe jetzt mehrere Herangehensweisen gesehen und weiß jetzt nicht wie ich am besten vorgehen soll. Hier eine Beispiel Aufgabe:
Text erkannt:
Aufgabe 26 (8 Punkte). Untersuchen Sie die folgenden auf \( \mathbb{R}^{2} \) definierten Funktionen auf Stetigkeit.
(i) \( f(x, y):=\left\{\begin{array}{cl}\frac{y^{2}-x^{2}}{x^{2}+y^{2}} & \text { falls }(x, y) \neq(0,0) \\ 0 & \text { falls }(x, y)=(0,0)\end{array}\right. \)
(ii) \( g(x, y):=\sin (x+y) \cdot f(x, y) \)
Hier wurde dann bei der i) für (0,0) 1/k für y eingesetzt, also f(0/1/k). Das ergibt 1 also ungleich 0. Somit nicht stetig. Soweit so verständlich für mich. Ich habe auch ähnliche Varianten gesehen, als x, y oder (t,t) eingesetzt wurde und ähnlich argumentiert wurde. Ähliches habe ich dann bei dieser Aufgabe auch gemacht:
Text erkannt:
Aufgabe 8. Gegeben ist die Funktion
\( f(x, y)=\left\{\begin{array}{ccl} \frac{x y+y^{2}}{|x|+|y|} & \text { für } & (x, y) \neq(0,0) \\ 0 & \text { für } & (x, y)=(0,0) \end{array} .\right. \)
Untersuchen Sie für welche \( (x, y) \in \mathbb{R}^{2} \) die Funktion \( f(x, y) \) stetig ist und welche der beiden partiellen Ableitungen erster Ordnung im Ursprung existieren.
Somit kam ich bei (x,y)=(0,0) indem ich y eingesetzt habe, also f(0,y) auf y2/|y| also ungleich 0 richtig? Somit kam ich auf den Schluss nicht stetig. Dies ist jedoch laut den Lösungen falsch. Da wird gezeigt das es auch für (0,0) stetig ist.
Somit bin ich nun ziemlich verwirrt. Wie soll ich grundsätzlich an so eine Aufgabe herangehen? Wenn ich weiß in welche Richtung ich argumentieren soll, kann ich zu einer passablen Lösung kommen, aber wenn ich es nicht eindeutig bestimmen kann ist es schwierig.
Falls da jemand was zu sagen kann wäre das super!